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1. Introduction

Curves or surfaces obtained from physics-based simulations are frequently \jagged"

or \non-smooth" and as such may be unsuitable as input for subsequent simulations. For

example, Potts model simulations of metallic grain growth describe the interface between

di�ering grains as a series of \stair-steps". The jagged stair-step interface is an artifact

of the simulation and will produce incorrect results in subsequent simulations unless the

interface is smoothed. Another example would be Lagrangian surface motion under a com-

putational uid dynamics ow which could leave surfaces highly convoluted after several

time-steps and unsuitable for further time-stepping unless they are smoothed.

By \smoothing" a surface grid, we mean (1) adjacent facets of the surface grid have

normals adjusted to vary more gradually, (2) node densities are equidistributed on the

surface, and (3) the aspect ratios of facets are improved.

A popular approach to surface grid smoothing has been to rely on a mapping from

a parametric space to the surface and to smooth the grid in the parametric space [3,6].

There are drawbacks to this approach. First, a mapping to a parametric space must exist,

and often surfaces generated by physical simulations are unstructured and are not easily

parameterizable. Second, smoothing of the surface grid in the parametric domain|while

preserving the shape of the surface|does not necessarily preserve the volume that the

surface grid encloses, due to the discreteness of the grid. This can be unacceptable in

physical simulations. Also, exact preservation of surface shape is undesirable for \stair-

step" surfaces.
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Another approach to surface grid smoothing is evolution of the surface grid by mean

curvature [1,4,5]. This approach will easily erase \stair-steps", but does not conserve

volume, and requires a sophisticated PDE solver.

In this paper, we present a non-parametric volume conserving approach to the smooth-

ing of surface grids. Our approach will, for example, rapidly deform a \stair-stepped"

closed surface into a smoothed surface which encloses the same volume down to round-o�

error. The surface grid can be unstructured and the resulting grid will satisfy the three

conditions for smoothness presented above. To accomplish this, our volume-conserving ap-

proach allows small deformations in the shape of the surface geometry. However, the degree

of surface deformation can be limited by controlling the number of smoothing iterations

performed.

Additionally, the notion of volume conservation is generalized in a natural way to allow

us to extend our scheme to non-closed surface grids. Finally, our conservative smoothing

schemes are naturally applicable to the lower-dimensional case of area conservation for

open and closed curves in the plane. Examples of conservative smoothing of open and

closed curves and surfaces will be presented.
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2. Area Conserving Smoothing of Curve Grids

Consider a closed non-self-intersecting curve � = (x0;x1; : : : ;xn�1;xn = x0) con-

sisting of n line segments in IR2. Say � encloses a region R (Figure 1). We seek a

smoothing operation on this curve that can be performed locally at each xi that in-

volves slightly altering the position of xi based on nearby or adjacent data points (say

fxi�m;xi�m+1; : : : ;xi+mg, m small). More generally, the smoothing operation could de-

pend on points in fxi�m;xi�m+1; : : : ;xi+mg and involve moving one or more points in

this neighborhood. The smoothing operation should be chosen to not alter the area of R.

If we perform the local smoothing operation in each local neighborhood in the curve in

some order, this is called a sweep. We desire that only a small number of sweeps through

the curve need be performed to smooth the overall appearance of the curve.
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Figure 1. Closed curve � enclosing region R.

If now � is allowed to intersect itself, it is the signed area of R (i.e. with respect

to the counter-clockwise orientation) we wish to conserve. Moreover, we can extend our

ideas to an open curve � = (x0;x1; : : : ;xn�1;xn 6= x0), by requiring that the sought after

smoothing operations conserve area in the closed curve � = (x0;x1; : : : ;xn�1;xn;x0).
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The simplest possible area conserving smoothing operation is depicted in Figure 2.

Here we consider the three points x0;x1;x2 along �. By moving the central point x1

parallel to the line segment x0x2, we are assured conservation of area. Further, by moving

x1 such that the projection of x1 onto x0x2 occurs midway between x0 and x2, we have

achieved equal spacing of the segments x0x1 and x1x2 when projected onto the segment

x0x2.
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Figure 2. One-point smoothing operation:

Movement of x1 parallel to x0x2 assures conservation of area under curve (x0;x1;x2).

We now formally state the algorithm based on this one-point smoothing operation.

For a vector v = (x; y) in 2-D, we de�ne v? � (�y; x). Let A021 =
1
2
(x2�x0)? � (x1�x0)

be the (signed) area of triangle �x0x2x1. Then

h =
2A021

jjx2 � x0jj

is the height of x1 above the baseline segment x0x2. n̂ =
(x2�x0)

?

jj(x2�x0)?jj
is the unit normal

to the baseline x0x2. Our smoothing operation thus involves repositioning x1 from its

original position to

xnew1 =
1

2
(x0 + x2) + hn̂:
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Sweeping through the nodes in sequential order, we obtain the following algorithm:

Algorithm 1: Area-Conserving smoothing of a plane curve using single-node

relaxations.

Repeat (sweep) until \done"

Do i = 0; : : : ; n� 1

[Perform smoothing operation on neighborhood fxi;xi+1;xi+2g

(i.e., relax node xi+1)]

n̂ 
(xi+2�xi)

?

jj(xi+2�xi)?jj

Ai;i+2;i+1  
1
2
(xi+2 � xi)? � (xi+1 � xi)

h 2
Ai;i+2;i+1

jj(xi+2�xi)?jj

xi+1  
1
2
(xi + xi+2) + hn̂

Algorithm 1, although simple, su�ers from the following serious de�ciency. Referring

to Figure 2, and calling the direction ��!x0x2 the direction \tangential" to � and the direction

orthogonal to ��!x0x2 the \normal" direction, we see that the one-point smoothing operation

smooths only in the the tangential direction. Any smoothing in the normal direction

is forbidden by the conservation of area requirement. Because of this lack of normal

smoothing, some star-shaped regions (Figure 3) will not be a�ected by the operation.

We conclude it is necessary to design a local smoothing operation that includes normal

smoothing.
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Figure 3. Star-shaped region is invariant under (and hence not smoothed by) Algorithm 1.

Now consider four sequential points x0, x1, x2, x3 along �. We take ��!x0x3 to be the

direction tangential to the curve and the direction orthogonal to ��!x0x3 to be normal to the

curve. If we simultaneously solved for the positions of x1, x2 subject to the constraint

of area conservation, normal smoothing is possible. This because conservation of area

represents a single constraint in the normal direction, but there are two degrees of freedom

available (the normal components of x1 and x2).

Thus, consider the following smoothing operation: Move x1, x2 so that the projection

of x1 onto x0x3 is one-third of the way between x0 and x3 and the projection of x2 is two-

thirds of the way between x0 and x3. Furthermore, the distances of x1 and x2 away from

x0x3 are set to be equal and this distance (h in Figure 4) is taken to conserve area. If this

is done, smoothing occurs in the normal direction, as well as in the tangential direction.



volume conserving smoothing 7

.

:::::::::::::::::::::
:::::::::::::::::::::
:::::::::::::::::::::
:::::::::::::::::::::
:::::::::::::::::::::
:::::::::::::::::::::
:::::::::::::::::::::

x 0

x 1

.

. .

..x 1
new

x 2
new

x 2

x 3

l

h

1/3 l 1/3 l 1/3 l

Figure 4. Two point (edge) smoothing. x1x2 moved to be parallel to x0x3 with projected endpoints

at 1
3
l and 2

3
l. Choosing h = 3

2
A0123

l
conserves area A0123.

The calculation of h is straightforward: The (signed) area A0321 of the quadrilateral

(x0;x3;x2;x1) cannot be altered. Repositioning of the points x1;x2 so that their projec-

tions are equally spaced implies that the area of the quadrilateral (x0;x3;x2;x1) will be

2
3
hl, where l is the length of x0x3. Thus we require

h =
3

2

A0123

l
:

The above smoothing operation can be interpreted as being a smoothing operation

acting on the edge x1x2. Thus, to perform a smoothing sweep through � using the above

smoothing operation, we perform the operation on all the edges of � in some order. For

example, if we use sequential order, we would perform the smoothing operation on the

edge x1x2, then perform it on the edge x2x3, and continue until we had smoothed the last

edge xnx1.
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Algorithm 2: Area-conserving smoothing of plane curve using edge relaxations.

Repeat (sweep) until \done"

Do i = 0; : : : ; n� 1

[Perform smoothing operation on neighborhood fxi;xi+1;xi+2;xi+3g

(i.e. relax edge xi+1;xi+2)]

n̂ 
(xi+3�xi)

?

jj(xi+3�xi)?jj

Ai;i+3;i+2;i+1  
1
2
(xi+3 � xi)? � (xi+2 � xi) +

1
2
(xi+2 � xi)? � (xi+1 � xi)

[signed area of quad (xi;xi+3;xi+2;xi+1)]

h 3
2

Ai;i+3;i+2;i+1

jj(xi+3�xi)?jj

xi+1  
2
3
xi +

1
3
xi+3 + hn̂

xi+2  
1
3
xi +

2
3
xi+3 + hn̂

R R
new

Figure 5. Before and after smoothing of a closed stair-step curve using

Algorithm 2 with 20 sweeps. Area of region R conserved down to round-o�.
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Figure 6. Before and after smoothing of an open curve using

Algorithm 2 with 10 sweeps.

In Figure 5, we show the results of performing 20 sweeps on a closed curve. Area

is conserved to within round-o� error, and the curve is very smooth. Clearly, further

iterations will not a�ect the appearance of the smoothed curve. In Figure 6, we show the

results of performing Algorithm 2 with 10 sweeps on an open curve �, holding the �rst

and last points �xed. If � were closed by addition of a segment between the �rst and

last points, the area enclosed by � would be conserved down to round-o� error. Further

iterations will continue to deform the curve.

3. Volume Conserving Smoothing of Surface Grids

Now consider a closed surface S =
S
Ti, where the Ti are planar triangular facets

Ti = Txi1xi2xi3
. We wish to perform a local smoothing operation in sweeps over small

neighborhoods throughout the surface which will have the net a�ect of smoothing the

surface without changing the amount of volume enclosed by the faceted surface. (If the

surface is subdivided by other types of geometric facets|such as quadrilaterals|they can

be subdivided into triangular facets for purposes of the following smoothing schemes.)

More generally, if S is not closed but \closable" (such as the grid in Figure 10 which can



10 kuprat and khamayseh

be closed by adding triangles to \cap" the ends), we seek a local smoothing operation that

does not alter the enclosed volume when S has been closed by some choice of additional

triangles.

Similar to the previous section, we �rst consider the simple operation of altering the

position of a single node x based on data from its immediate neighbors. Consider Figure

7, here x is surrounded by the points x(1);x(2); : : : ;x(n), which form a counter-clockwise

cycle when viewed from \outside" the surface. We de�ne

e(i) = x(i) � x:

We contemplate moving x to x + dxtang, where dxtang is in a direction tangential to the

surface at x so that the neighborhood of x is \tangentially smoothed". Then we further

reposition x by hn̂. That is, to ensure conservation of volume, we further move x by some

multiple h of the unit normal n̂ at the surface.
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Figure 7. Node x on triangular faceted surface surrounded by n neighbors x(1); :::;x(n).
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The \normal" direction chosen is somewhat arbitrary, since the faceted surface is not

smooth at x and so no true normal exists, but a reasonable choice would be the normalized

sum of area vectors of all the triangles incident on x. That is

n̂ =

Pn

i=1 e
(i) � e(i+1)

jj
Pn

i=1 e
(i) � e(i+1)jj

: (1)

We are contemplating a move of x to x+ dxtang+hn̂, where h is to be chosen so that

volume is conserved. Now the change of volume is given by

6dV =

nX
i=1

(dxtang + hn̂) � e(i) � e(i+1) (2)

= (dxtang + hn̂) �

nX
i=1

e(i) � e(i+1):

(The \6" arises from use of the volume formula for tetrahedra employed for the terms in

the sum in (2).) Thus dV = 0 implies

h =
�dxtang �

Pn

i=1 e
(i) � e(i+1)

n̂ �
Pn

i=1 e
(i) � e(i+1)

= �dxtang � n̂;

using (1). Now if dxtang were in the plane orthogonal to n̂, then we would have h = 0 and no

normal correction is necessary. However, if our \tangential" smoothing scheme produces a

displacement dxtang that is only roughly tangential, then the correction hn̂ = �(dxtang �n̂)n̂

will be nonzero.

This is the case for the choice of Laplacian smoothing for the tangential smoothing

scheme. In Laplacian smoothing, a point is simply moved to the average position of its

neighbors. That is

x+ dxtang =

Pn

i=1 x
(i)

n
:

In this case, with the x(i) being only roughly in the tangent plane of the surface at x, the

displacement dxtang will be essentially tangential, but a small correction hn̂ will have to

be made. Note: Planar smoothing schemes more sophisticated than Laplacian smoothing

are available [2].
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Algorithm 3: Volume-Conserving smoothing of a surface using single-node

relaxations.

Repeat (sweep) until \done"

For each node x surrounded by neighbors fx(1);x(2); : : : ;x(n)g

n̂ 

P
n

i=1
e
(i)
�e

(i+1)

jj

P
n

i=1
e(i)�e(i+1)jj

dxtang  

P
n

i=1
x
(i)

n
� x

x x+ dxtang � (dxtang � n̂)n̂

The aw of this scheme is identical to that of the analogous scheme (Algorithm 1)

presented in the previous section. Both schemes are simple, but lack smoothing in the

direction normal to the surface, since conservation of area or volume fully determines the

normal distance of the relaxed node from the surface. As a consequence, Algorithm 3 will

leave some star-shaped polyhedra (analogous to Figure 3) unchanged.

Analogous to the development of the previous section, we develop a smoothing opera-

tion which exhibits normal smoothing, and which involves relaxing two adjacent neighbors|

thus we relax edges on the surface. Consider Figure 8, here we contemplate relaxing the

edge x1x2 based on data from the surrounding nodes.
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Figure 8. Nomenclature for nodes surrounding edge x1x2 on triangular faceted surface.



volume conserving smoothing 13

Here x1 is surrounded by the nodes x
(1)
1 ;x

(2)
1 ; : : : ;x

(n1)
1 , and x2 is surrounded by nodes

x
(1)
2 ;x

(2)
2 ; : : : ;x

(n2)
2 , such that

x2 = x
(1)
1 and

x1 = x
(1)
2 :

We de�ne e
(j)
i = x

(j)
i � xi. Now

Ai =

niX
j=1

e
(j)
i � e

(j+1)
i ; i = 1; 2

is the \area" vector associated with xi which is the sum of the area vectors of the triangles

incident on xi. (Note: Actually it would be more proper to call Ai the \double area

vector", since it is formed by summing vectors which are normal to each triangle with

magnitude equal to double the area of each triangle.) A reasonable choice for the direction

\normal" to the surface at the edge x1x2 would thus be

n̂ =
A1 +A2

jjA1 +A2jj
:

We now contemplate moving xi to xi + dx
tang
i , where the dx

tang
i are roughly tangential

to the surface, so that the neighborhood of x1x2 is tangentially smoothed. Then we

move x1, x2 in the normal direction n̂ so that volume is conserved and normal smoothing

is undertaken. As in the curve smoothing case, the meaning of \normal smoothing" is

equalization of the normal components of the positions of x1 and x2.

As in Algorithm 3, we can de�ne the dx
tang
i by Laplacian smoothing. That is

dx
tang
i =

Pni

j=1 x
(j)
i

ni
� xi; i = 1; 2:

Now, de�ning

~xi = xi + dx
tang
i ;

and if we de�ne

dxi = dx
tang
i + (h� ~xi � n̂)n̂; (3)
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then

(xi + dxi) � n̂ = h; i = 1; 2:

Thus (h� ~xi � n̂)n̂ represents a readjustment in the normal direction that will equalize the

normal components of the xi's. It thus remains for us to derive the value that will result

in conservation of volume.

The change in volume caused by the move of the xi to xi+dxi is computed as follows.

First, the movement of x1 to x1+ dx1 causes the triangles f(x1;x
(j)
1 ;x

(j+1)
1 ) j 1 � j � n1g

to \sweep out" volume between their initial positions and their �nal positions at f(x1 +

dx1;x
(j)
1 ;x

(j+1)
1 ) j 1 � j � n1g. The volume change caused by motion of x1 to x1 + dx1 is

thus equal to the volume of the tetrahedra f(x1;x1 + dx1;x
(j)
1 ;x

(j+1)
1 ) j 1 � j � n1g, or

6dV1 =

n1X
j=1

dx1 � e
(j)
1 � e

(j+1)
1 (4)

= dx1 �A1:

Next, the movement of x2 to x2+dx2 creates a volume change similar to (4), but we must

take into account that x1 = x
(1)
2 has already been moved to x1 + dx1. That is, e

(1)
2 has

been changed to e
(1)
2 + dx1. Thus, de�ning

ge(1)2 = e
(1)
2 + dx1

fe(j)2 = e
(j)
2 ; 2 � j � n2;

we have

6dV2 =

n2X
j=1

dx2 �
fe(j)2 � ge(j+1)2

=

n2X
j=1

dx2 � e
(j)
2 � e

(j+1)
2 + dx2 � dx1 � e

(2)
2 + dx2 � e

(n2)
2 � dx1

= dx2 �A2 + dx2 � (e
(n2)
2 � e

(2)
2 )� dx1

= dx2 �A2 + dx2 � v � dx1;

where v � e
(n2)
2 � e

(2)
2 (= e

(2)
1 � e

(n1)
1 ). Thus conservation of volume requires us to have

0 = 6dV = 6dV1 + 6dV2

= dx1 �A1 + dx2 �A2 + dx2 � v � dx1:
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Substituting (3) into this expression, we obtain

0 = [dx
tang
1 + (h� ~x1 � n̂)n̂] �A1 + [dx

tang
2 + (h� ~x2 � n̂)n̂] �A2

+ [dx
tang
2 + (h� ~x2 � n̂)n̂] � v � [dx

tang
1 + (h� ~x1 � n̂)n̂]

= [dx
tang
1 � ( ~x1 � n̂)n̂] �A1 + [dx

tang
2 � ( ~x2 � n̂)n̂] �A2

+ hn̂ � (A1 +A2) + [dx
tang
2 � ( ~x2 � n̂)n̂] � v � [dx

tang
1 � ( ~x1 � n̂)n̂]

+ h(dx
tang
2 � dx

tang
1 ) � v � n̂:

De�ning pi = dx
tang
i � ( ~xi � n̂)n̂; i = 1; 2, we obtain

h = �
p1 �A1 + p2 �A2 + p2 � v � p1

n̂ � (A1 +A2) + (dx
tang
2 � dx

tang
1 ) � v � n̂

:

The computation of h in this last expression might lead to problems: (1) the denominator

is close to round-o�, or (2) computed h is very large, leading to very large dxi. Case (1)

is rarely expected, since

n̂ � (A1 +A2) = jjA1 +A2jj

is positive for nonpathological cases, and the dx
tang
i are expected to be relatively small.

Case (2) is possible only in some pathological cases where arbitrary movement of x1;x2 in

the direction n̂ has a negligible e�ect on the magnitude of the volume enclosed. Although

these cases rarely occur, a robust algorithm must anticipate them. Our algorithm detects if

the computed jjdxijj exceed a maximum allowed movement distance and reverts to single

node relaxation in this circumstance. Our choice for the maximum allowed movement

distance is a small multiple (e.g. 2) of the length of the longest e
(j)
i .

Figures 9 and 10 show results of smoothing highly jagged grids using Algorithm 4. In

Figure 9, we converted the closed quadrilateral surface into a closed triangular surface by

adding diagonal segments. It is the volume enclosed by the derived triangular surface that

is preserved. In Figure 10, we only relaxed edges having both endpoints not on the two

closed boundary curves at either end of the grid. Volume is conserved in the sense that if

the grid were closed in some arbitrary fashion, then the performed smoothing operations

would not have changed the volume of the closed grid. (e.g. the \capped" �gure formed by

adding planar disks at each end would not have had its volume altered by the performed

smoothing operations.)
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Algorithm 4: Volume-Conserving smoothing of a surface using edge relax-

ations.

Repeat (sweep) until \done"

For each edge x1x2 surrounded by neighbors fx
(j)
i g

j=1;:::;ni
i=1;2 , relax edge:

Ai  
Pni

j=1 e
(j)
i � e

(j+1)
i ; i = 1; 2

v e
(n2)
2 � e

(2)
2

n̂ A1+A2

jjA1+A2jj

dx
tang
i  

P
ni

j=1
x
(j)
i

ni
� xi; i = 1; 2

pi  dx
tang
i � [(xi + dx

tang
i ) � n̂]n̂; i = 1; 2

denom n̂ � [A1 +A2 + (dx
tang
2 � dx

tang
1 )� v]

numer �(p1 �A1 + p2 �A2 + p2 � v � p1)

If jdenomj < � then

n̂i  
Ai

jjAijj
; i = 1; 2

dxi  dx
tang
i � (dx

tang
i � n̂i)n̂i; i = 1; 2

else

h numer
denom

dxi  pi + hn̂; i = 1; 2

e maxi;jfjje
(j)
i jjg

k  2

If max(jjdx1jj; jjdx2jj > ke) then

n̂i  
Ai

jjAijj
; i = 1; 2

dxi  dx
tang
i � (dxtangi � n̂i)n̂i; i = 1; 2

xi  xi + dxi; i = 1; 2
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Figure 9. Before and after smoothing of a closed quadrilateral surface grid using

25 sweeps of Algorithm 4.
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Figure 10. Before and after smoothing of an open triangular surface grid using

25 sweeps of Algorithm 4.
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